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For the integral I,, we have the formula (2.12) with the replacement of G+ (p) by 

K, (p). In this case, for the latter one we can, apart of (3.7), make use of the expansion 

K+(P)= $j f&* i, 
p-i m 

m=o ( ) 
(3.16) 

which follows from (3.11). Its use leads to the formulas (2,13), (2.14) and (2.16) with 

the replacement of gn by gn*. 
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The polar symmetric strain of a viscoelastic thick-walled hollow sphere, whose material 
possesses the property of different resistivity under tension and compression is considered. 
The vessel is subjected to internal pressure p and external tension p which are distri- 
buted uniformly over the surfaces r = a and r =- h (U < 6). Because of the above, the 
vessel is separated into two parts by a spherical surface of radius r = p, which is inde- 
pendent of the quantity p during solution of the corresponding elastic problem [l] even 
when p varies with time t. 
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In solving the viscoelastic problem, let us proceed from the physical operator equa- 
tions in spherical coordinates : 

For the first part of the vesse1 (+ > 0, G, = e9 > 0) 

,?-Fr 5 -- Zi’->e, 15 +Et 
r 1 0 

(1 - v,‘) z0 - v +- f ‘r (2) 

Here 5~3 ZR = s,, Ee = E .: u / r, F,, m= Ch / 8r are the stresses and strains, I:t ’ , vf+ 
and /Yt-, vt- are the oper>tor moduli and operator Poisson’s ratios under tension (plus 

superscript) and compression (minus superscript), u = u1 and u = u,a are normal dis- 

placements in the first and second parts of the sphere, respectively, where the operators 

are I?!+ = Eo+ (1 - RI*), Et- = E,- (1 - R$*) (3) 
yt 

+_ - yO+ (1 - gO+R1*), vt- = Y. - (1 -t go-R,*) (4) 
t 

go* = 1 _ 2\y)% 

2v”f ’ 
Xi*{.)= R,(t,r){.}dz (i=l,Z) 

s 
0 

and I< i” are integral operators with relaxation kernels Ri (t, z) and Rz (t, t) for tension 
and compression, respectively, B”+, Y,,+ and Ro-, WI- are elastic instantaneous constants 
characterizing the different moduli of the material. 

As a corollary of the operator expressions (3), we have 

1 1 -_ 
b>’ + - r (1 + Pl*), 

f 0 

-+ = --!- &O- (1 + p2*1 

where Pi* are integral operators with the creep kernels I’i (t, T). Hence Pi*Ri* = Pi* - 

Ri*. The expressions (4) correspond to the case of constant dilatation operator [ 21 under 
tension and compression. 

In conformity with the propositions in [l, 31, it is assumed that 

vt+ /Et+ = vt- / E,- (5) 

The generality of the operator method is in no way associated with condition (5) o Just 
as the condition of no after-effect during dilatation condition (5) only contributes to 
obtaining less awkward results than in the general case when the number of relaxation 
kernels is greater than two. 

It follows from physical considerations that Ri * -1 and Pi*. 1 are positive monotonely 

increasing functions of time t, where 0 < Ri*. 1 Q 1 and 0 < Z’i*. 1 < 30 as t -+ 00. 
The boundary conditions and conditions on the surface r = P are the following: 

Gr (a, t) = - p, or (b, 1) =~c p, Gr (p, t) = 0, u1 (p, t) == 112 (p, 4 

In general, P depends on the time and is to be determined. 
Solving (2) for ~~ and co and taking account of (5). we obtain 

(6) 

A, = (1 - Y1+ - %Vt+Vt-) / E,- ( 6 =E’+/lT- (8) 
t t I 

Equations corresponding to the first part of the sphere are obtained from (7) and (8) if 
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we take vt+ = vt-, Et+ = Et- therein and replace u2 by ldl. 

The following statements are proved below. 
Theorem 1. If neither of the operators yl+ and z’~- degenerates into a constant 

and the pressure p depends on time, then the radius of curvature p (t) depends on the 
pressure p (tl and is determined from a nonlinear integral equation. 

Theorem 2. If Et+ Y(,- = Et- VI)+, then the radius of curvature p is found from 

an algebraic equation corresponding to the elastic problem, is independent of time and 

pressure P (t) = pd (t), where p,, is the initial pressure and f (t) is a specified positive 
bounded monotonic function of time. 

The displacements ZL~ (t) and U? (t) vary in proportion to the elastic displacements 
ut (0) and u2 (0) with the proportionality coefficient D (i) = (1 + P*,,f (1) and as 
t - 01’ approaches the limit values 

To prove these theorems it is sufficient to find the principal solution of the viscoelas- 

tic problem under consideration, Substituting the expressions for sr and c0 from (7), 
taking account of (8) and (5). into the equilibrium equation r (8sr / ar) ! 2 (sY - I;,~) = 

0, we obtain the integro-differential equation 

(9) 

2f?,+ (1 -- Y,‘) 
2p, = B5,- (, _ y r,.) -= 2110 -t- I\‘*, 

El,+ (1 -- VII-) 
PO == 1;,c- (1 - y(j ‘) 

/<* Z “p, (‘/,,-/J.L* - I[,* --- fjO-If,*P.?‘?. q,,:t = 1 ; 2 (I -- VU*) 

The kernel HI (6 Z) of the operator H *1 is the resolvent of the kernel QUIP, (t, r) of 

the operator qo+f*l. Substituting 

reduces (9) to the integral equation 

(10) 

The kernel of the coordinate operator 

fl = K* (Cv-“’ + Czr 

ai = l/2 + (- l)in, i = 1, 2, n2 = 1/4 + 2p. 

(cl (t) and cz (t) are functions of time to be determined). Solving (lo), we obtain 

v = !i + M) fr, where the operator M is expressed by the Neumann series 

which converges uniformly, as is known [4], when a < r < b, 0 < t < 0~1. Here the ker- 
nels of the operators K*m and Q**” 

t 
have the sense of repeated kernels 

I’ 
K ,,,+l(t, ~1 =)K#, dK,(g, qds 

5 



170 M.I.Rozovskll 

Q,+,(r,4)=$Ql(rr?)Q,,(rlrr)d9 

K (t, T) = K,:L z), Q (r, :) = VI (r, 5) 

Returning to the desired function uz (r, t),we obtain 

ua (r, t) = $r (r) Cl (t) + OS (r) G (t) 

$i (r) _ r-“i + i ~pg)+~ (r) K*“‘+l 

VII=0 

(11) 

Using the conditions 5,. (0, t) = - p, 6,. (p, t) = 0 and the first equation in (7) as well 
as (ll), we obtain a system of linear integral equations 

a1 (a) Cl + 12 (a) Cz + Ate = 0, X,(p) Cl + ?L2 (p) cz = 0 (12) 
Here 

hi (a) = P-l (6,, -C&J, 6,, = 2v + Ls,, =- 1 - VI+ /’ - 

‘i (P) = (6,, - “I’ll) P-‘“i-l + *‘li* (P) 

qi* (p) = i K*“‘+’ is,, $_ .-I- I& _& 

m=o 
From the system (12) it follows that 

L,C, -I- A (p) At p = 0, L/C2 == A,p (13) 
Lf =: A, (0) A, (P) - 12 (a), At (I’)==hZ([‘) i I, ((I) 

The general solution of the differential equation determining the displacement u1 (r, 
1) is 

ltl = .,lr-? f- Ur (14) 

Replacing the quantities C,, C.? and a in the system (12) by .,I, /I and b , respectively, 
and assuming 

h’* f 0, c(~ = “, a3 = - 1, At :: (1 - vt+ - “v$) / I:t+ 

we obtain a system of integral equations determining ,1 and fi. As a corollary of its 

solution and the representation (14), we have 

us (r, t) = l/J? (p”r-? + 2rTzt) (b3 - p3)-13’11fl 

1 + v,+ 
T,, = - 

3 
R + 7 

t 
T,, = * +Vt+ - 2 

(15) 

Using the condition 1~~ (p, t) = ~2 (p, t), and taking account of the representations (ll), 
(13) and (15), we obtain the nonlinear integral equation 

VL,p(l t- 2TZf) (@ - p3)-ll,[p = 2 [Q, (p) A, (P) - $2 @)I ASP (16) 

All the effects mentioned here are satisfied in conformity with the theory developed 
in [S] and by means of the rules established in [6, 71. Equation (16) can be solved by 
successive approximations. The structure of (16) determining the quantity p (t), verifies 



Operator method of InVestigating the Strain of a hollow sphere 171 

the validity of Theorem 1 and shows that the Volterra principle cannot be used to solve 
the problem under consideration in the general case. 

When vt- = vi,+ and vf- = v,,-, then by virtue of the property (5) the ratio of the ope- 
rators /:,- / I:,- degenerates into the constant vIjT i vi,. Since Pt = PO here, then the 

integro-differential equation (9) goes over into a known differential equation and the 

system of integral equations degenerates into an algebraic system. The nonlinear integral 
equation (16) hence reduces to the known algebraic equation p] which does not contain 
the pressure P. Only the displacements u1 (t) and u2 (II which are obtained by repla- 
cing the quantity 1/ 61+ in (7.13) and (7.15) in [l] by 

I/ E,+ = (1 / E”+) (1 + PSI) 

will depend on time. 
This latter confirms the validity of Theorem 2 and shows that the Volterra principle 

is valid in this particular case. The condition Pf = PLO is not itself sufficient for appli- 
cability of the Volterra principle since it can also be realized for vt*- # v,)+ and vt- # 

WI-. In this case only simplification of the problem occurs. 
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